Начертательная геометрия. Теория

Проза 19.04.2024
Проза

Цели:

  • Изучение правил построения проекций точек на поверхности предмета и чтения чертежей.
  • Развивать пространственное мышление, умение анализировать геометрическую форму предмета.
  • Воспитывать трудолюбие, умение сотрудничать при работе в группах, интерес к предмету.

ХОД УРОКА

I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ.

II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ.

ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ (НАСТРОЕНИЕ)

III ЭТАП. ИНДИВИДУАЛЬНАЯ РАБОТА.

I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

1) Учитель: Проверьте свое рабочее место, всё ли на месте? Все готовы к работе?

ВЗДОХНУЛИ ГЛУБОКО, НА ВЫДОХЕ ЗАДЕРЖАЛИ ДЫХАНИЕ, ВЫДОХНУЛИ.

Определите свое настроение на начало урока по схеме (такая схема лежит у каждого на столе)

Я ЖЕЛАЮ ВАМ УДАЧИ.

2) Учитель: Практическая работа по теме “ Проекции вершин, ребер, граней” показала, что есть ребята, которые допускают ошибки при проецировании. Путаются, какая из двух совпадающих точек на чертеже является видимой вершиной, а какая невидимой; когда ребро параллельно плоскости, а когда перпендикулярно. То же самое с гранями.

Чтобы исключить повторение ошибок, по консультирующей карточке выполните необходимые задания и исправьте ошибки в практической работе (от руки). И работая, помните:

“ОШИБАТЬСЯ МОЖЕТ КАЖДЫЙ, ОСТАВАТЬСЯ ПРИ СВОЕЙ ОШИБКЕ – ТОЛЬКО БЕЗУМНЫЙ”.

А тот, кто хорошо усвоил тему, поработают в группах с творческими заданиями (см. Приложение 1 ).

II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ

1) Учитель: На производстве встречаются множество деталей, которые крепятся друг к другу определенным образом.
Например:
Крышка рабочего стола крепится к вертикальным стойкам. Обратите внимание на стол, за которым вы находитесь, как и чем крепятся между собой крышка и стойки?

Ответ: Болтом.

Учитель: А что для болта необходимо?

Ответ: Отверстие.

Учитель: Действительно. А чтобы отверстие выполнить, надо знать его расположение на изделие. Изготавливая стол, столяр не может каждый раз обращаться к заказчику. Значит, чем необходимо обеспечить столяра?

Ответ: Чертежом.

Учитель: Чертеж!? А что мы с вами называем чертежом?

Ответ: Чертежом называется изображение предмета прямоугольными проекциями в проекционной связи. По чертежу можно представить геометрическую форму и конструкцию изделия.

Учитель: Мы с вами выполнили прямоугольные проекции, а дальше? Сможем ли мы по одним проекциям определить расположение отверстий? Что нам необходимо еще знать? Чему научиться?

Ответ: Строить точки. Находить проекции этих точек на всех видах.

Учитель: Молодцы! Это и есть цель нашего урока, и тема: Построение проекций точек на поверхности предмета. Запишите тему урока в тетрадь.
Мы с вами знаем, что любая точка или отрезок на изображении предмета являются проекцией вершины, ребра, грани, т.е. каждый вид – это изображение не с одной стороны (гл. вид, вид сверху, вид слева), а всего предмета.
Для того, чтобы правильно находить проекции отдельных точек, лежащих на гранях, нужно прежде всего найти проекции этой грани, а затем при помощи линий связи отыскать проекции точек.

(Смотрим чертеж на доске, работаем в тетради, где выполнены дома 3 проекции такой же детали).

– Открыли тетрадь с выполненным чертежом (Объяснение построения точек на поверхности предмета с наводящими вопросами на доске, а учащиеся закрепляют в тетради.)

Учитель: Рассмотрим точку В . Какой плоскости параллельна грань с этой точкой?

Ответ: Грань параллельна фронтальной плоскости.

Учитель: Задаемся проекцией точки b’ на фронтальной проекции. Проводим вниз от точки b’ вертикальную линию связи до горизонтали проекции. Где будет находиться горизонтальная проекция точки В ?

Ответ: На пересечении с горизонтальной проекцией грани, которая спроецировалась в ребро. И находится внизу проекции (вида).

Учитель: Профильная проекция точки b’’ , где будет находиться? Как мы ее найдем?

Ответ: На пересечении горизонтальной линии связи из b’ с вертикальным ребром справа. Это ребро и есть проекция грани с точкой В.

К ДОСКЕ ВЫЗЫВАЮТСЯ ЖЕЛАЮЩИЕ ПОСТРОИТЬ СЛЕДУЮЩУЮ ПРОЕКЦИЮ ТОЧКИ.

Учитель: Проекции точки А так же находятся с помощью линий связи. Какой плоскости параллельна грань с точкой А ?

Ответ: Грань параллельна профильной плоскости. Задаемся на профильной проекции точкой а’’ .

Учитель: На какой проекции грань спроецировалась в ребро?

Ответ: На фронтальной и горизонтальной. Проведем горизонтальную линию связи до пересечения с вертикальным ребром слева на фронтальной проекции, получим точку а’ .

Учитель: А как найти проекцию точки А на горизонтальной проекции? Ведь линии связи из проекции точек а’ и а’’ не пересекают проекцию грани (ребро) на горизонтальной проекции слева. Что нам может помочь?

Ответ: Можно воспользоваться постоянной прямой (она определяет место вида слева) из а’’ проводят вертикальную линию связи до пересечения с постоянной прямой. Из точки пересечения проводят горизонтальную линию связи, до пересечения с вертикальным ребром слева. (Это и есть грань с точкой А) и обозначает проекцию точкой а .

2) Учитель: У каждого на столе лежит карточка-задание, с прикреплённой калькой. Рассмотрите чертёж, теперь попробуйте самостоятельно, без перечерчивания проекций, найти на чертеже заданные проекции точек.

– Найдите в учебнике стр. 76 рис. 93. Проверьте себя. Кто выполнил правильно – оценка "5""; одна ошибка – ‘’4’’; две – ‘’3’’.

(Оценки выставляют сами учащиеся в листе самоконтроля).

– Собрать карточки для проверки.

3) Работа в группах: Время ограничено: 4мин. + 2 мин. проверки. (Две парты с учащимися объединяются, и внутри группы выбирается руководитель).

На каждую группу раздаются задания в 3-х уровнях. Учащиеся выбирают задания по уровням, (по своему желанию). Решают задачи на построение точек. Обсуждают построение под контролем руководителя. Затем на доске с помощью кодоскопа высвечивается правильный ответ. Все проверяют правильность выполнения проецирования точек. При помощи руководителя группы выставляют оценки на заданиях и в листах самоконтроля (см. Приложение 2 и Приложение 3 ).

ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ

“Поза фараона” – сесть на край стула, выпрямить спину, руки согнуть в локтях, ноги скрестить и поставить на носочки. Вздохнуть, напрячь все мышцы тела на задержке дыхания, выдохнуть. Сделать 2-3 раза. Глаза сильно зажать, до звездочек, открыть. Отметить свое настроение.

III ЭТАП. ПРАКТИЧЕСКАЯ ЧАСТЬ. (Индивидуальные задания)

Предлагаются карточки-задания на выбор с разным уровнем. Учащиеся самостоятельно выбирают по своим силам вариант. Найти проекции точек на поверхности предмета. Работы сдаются и оцениваются к следующему уроку. (См. Приложение 4 , Приложение 5 , Приложение 6 ).

IV ЭТАП. ЗАКЛЮЧИТЕЛЬНЫЙ

1) Задание на дом. (Инструктаж). Выполняется по уровням:

В – понимание, на "3". Упр.1 рис. 94а стр. 77 – по заданию в учебнике: достроить недостающие проекции точек на данных проекциях.

Б – применение, на "4". Упр.1 рис.94 а, б. достроить не достающие проекции и обозначить вершины на наглядном изображении в 94а и 94б.

А – анализ, на "5". (Повышенной сложности.) Упр. 4 рис.97 – построить не достающие проекции точек и обозначить их буквами. Наглядного изображения нет.

2) Рефлексивный анализ.

  1. Определите настроение в конце урока, отметьте в листе самоконтроля любым знаком.
  2. Что нового узнали сегодня на уроке?
  3. Какая форма работы наиболее эффективна для вас: групповая, индивидуальная и вы хотели бы, чтобы она повторялась на следующем уроке?
  4. Собрать листки самоконтроля.

3) “Ошибающийся учитель”

Учитель: Вы научились строить проекции вершин, ребер, граней и точки на поверхности предмета, соблюдая все правила построения. Но вот вам передали чертеж, где есть ошибки. Попробуйте теперь себя в роли учителя. Найдите сами ошибки, если найдете все 8–6 ошибок, то оценка соответственно “5”; 5–4 ошибки –“4”, 3 ошибки – “3”.

Ответы:

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

Точка в пространстве определяется любыми двумя своими проекциями. При необходимости построения третьей проекции по двум заданным необходимо воспользоваться соответствием отрезков линий проекционной связи, полученных при определении расстояний от точки до плоскости проекций (см. рис. 2.27 и рис. 2.28).

Примеры решения задач в I октанте

Дано А 1 ; А 2 Построить А 3
Дано А 2 ; А 3 Построить А 1
Дано А 1 ; А 3 Построить А 2

Рассмотрим алгоритм построения точки А (табл. 2.5)

Таблица 2.5

Алгоритм построения точки А
по заданным координатам А (x = 5, y = 20, z = -9)

В следующих главах мы будем рассматривать образы: прямые и плоскости только в первой четверти. Хотя все рассматриваемые способы можно применить в любой четверти.

Выводы

Таким образом, на основании теории Г. Монжа, можно преобразовать пространственное изображение образа (точки) в плоскостное.

Эта теория основывается на следующих положениях:

1. Все пространство делится на 4 четверти с помощью двух взаимно перпендикулярных плоскостей p 1 и p 2 , либо на 8 октантов при добавлении третьей взаимно-перпендикулярной плоскости p 3 .

2. Изображение пространственного образа на эти плоскости получается с помощью прямоугольного (ортогонального) проецирования.

3. Для преобразования пространственного изображения в плоскостное считают, что плоскость p 2 – неподвижна, а плоскость p 1 вращается вокруг оси x так, что положительная полуплоскость p 1 совмещается с отрицательной полуплоскостью p 2 , отрицательная часть p 1 – с положительной частью p 2 .

4. Плоскость p 3 вращается вокруг оси z (линии пересечения плоскостей) до совмещения с плоскостью p 2 (см. рис. 2.31).

Изображения, получающиеся на плоскостях p 1 , p 2 и p 3 при прямоугольном проецировании образов, называются проекциями.

Плоскости p 1 , p 2 и p 3 вместе с изображенными на них проекциями, образуют плоскостной комплексный чертеж или эпюр.

Линии, соединяющие проекции образа ^ осям x , y , z , называются линиями проекционной связи.

Для более точного определения образов в пространстве может быть применена система трех взаимно перпендикулярных плоскостей p 1 , p 2 , p 3 .

В зависимости от условия задачи можно выбрать для изображения либо систему p 1 , p 2 , либо p 1 , p 2 , p 3 .

Систему плоскостей p 1 , p 2 , p 3 можно соединить с системой декартовых координат, что дает возможность задавать объекты не только графическим или (вербальным) образом, но и аналитическим (с помощью цифр).

Такой способ изображения образов, в частности точки, дает возможность решать такие позиционные задачи, как:

  • расположение точки относительно плоскостей проекций (общее положение, принадлежность плоскости, оси);
  • положение точки в четвертях (в какой четверти расположена точка);
  • положение точек относительно друг друга, (выше, ниже, ближе, дальше относительно плоскостей проекций и зрителя);
  • положение проекций точки относительно плоскостей проекций (равноудаление, ближе, дальше).

Метрические задачи:

  • равноудаленность проекции от плоскостей проекций;
  • отношение удаления проекции от плоскостей проекций (в 2–3 раза, больше, меньше);
  • определение расстояния точки от плоскостей проекций (при введении системы координат).

Вопросы для самоанализа

1. Линией пересечения каких плоскостей является ось z ?

2. Линией пересечения каких плоскостей является ось y ?

3. Как располагается линия проекционной связи фронтальной и профильной проекции точки? Покажите.

4. Какими координатами определяется положение проекции точки: горизонтальной, фронтальной, профильной?

5. В какой четверти располагается точка F (10; –40; –20)? От какой плоскости проекций точка F удалена дальше всего?

6. Расстоянием от какой проекции до какой оси определяется удаление точки от плоскости p 1 ? Какой координатой точки является это расстояние?

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поверхности многогранников, как известно, ограничены плоскими фигурами. Следовательно, точки, заданные на поверхности многогранника хотя бы одной проекцией, являются в общем случае определенными точками. То же относится к поверхностям других геометрических тел: цилиндра, конуса, шара и тора, ограниченных кривыми поверхностями.

Условимся изображать видимые точки, лежащие на поверхности тела, кружками, невидимые точки — зачерненными кружками (точками); видимые линии будем изображать сплошными, а невидимые — штриховыми линиями.

Пусть задана горизонтальная проекция А 1 точки А, лежащей на поверхности прямой треугольной призмы (рис. 162, а).

TBegin-->TEnd-->

Как видно из чертежа, переднее и заднее основания призмы параллельны фронтальной плоскости проекций П 2 и проецируются на нее без искажения, нижняя боковая грань призмы параллельна горизонтальной плоскости проекций П 1 и также проецируется без искажения. Боковые ребра призмы являются фронтально-проецирующими прямыми, поэтому на фронтальную плоскость проекций П 2 они проецируются в виде точек.

Поскольку проекция А 1 . изображена светлым кружком, то точка А — видимая и, следовательно, находится на правой боковой грани призмы. Эта грань является фронтально-проецирующей плоскостью, и фронтальная проекция А2 точки должна совпадать с фронтальной проекцией плоскости, изобразившейся прямой линией.

Проведя постоянную прямую k 123, находим третью проекцию А 3 точки А. При проецировании на профильную плоскость проекций точка А будет невидимой, поэтому точка А 3 изображена зачерненным кружком. Задание точки фронтальной проекцией В 2 является неопределенным, так как оно не определяет расстояния точки В от переднего основания призмы.

Построим изометрическую проекцию призмы и точки А (рис. 162, б). Построение удобно начать с переднего основания призмы. Строим треугольник основания по размерам, взятым с комплексного чертежа; по оси у" откладываем размер ребра призмы. Аксонометрическое изображение А" точки А строим с помощью координатной ломаной, обведенной на обоих чертежах двойной тонкой линией.

Пусть задана фронтальная проекция С 2 точки С, лежащей на поверхности правильной четырехугольной пирамиды, заданной двумя основными проекциями (рис. 163, а). Требуется построить три проекции точки С.

Из фронтальной проекции видно, что вершина пирамиды находится выше квадратного основания пирамиды. При этом условии все четыре боковые грани будут видимыми при проецировании на горизонтальную плоскость проекций П 1 . При проецировании на фронтальную плоскость проекций П 2 видимой будет только передняя грань пирамиды. Поскольку проекция С 2 изображена на чертеже светлым кружком, то точка С видимая и принадлежит передней грани пирамиды. Для построения горизонтальной проекции С 1 проводим через точку С 2 вспомогательную прямую D 2 Е 2 , параллельную линии основания пирамиды. Находим ее горизонтальную проекцию D 1 E 1 и на ней точку С 1. При наличии третьей проекции пирамиды горизонтальную проекцию точки С 1 находим более просто: найдя профильную проекцию С 3 , по двум проекциям строим третью с помощью горизонтальной и горизонтально-вертикальной линий связи. Ход построения показан на чертеже стрелками.

TBegin-->
TEnd-->

Построим диметрическую проекцию пирамиды и точки С (рис. 163, б). Строим основание пирамиды; для этого через точку О", взятую на оси r", проводим оси х" и у"; по оси х" откладываем действительные размеры основания, а по оси у" — уменьшенные вдвое. Через полученные точки проводим прямые, параллельные осям х" и у". По оси z" откладываем высоту пирамиды; полученную точку соединяем с точками основания, учитывая видимость ребер. Для построения точки С пользуемся координатной ломаной, обведенной на чертежах двойной тонкой линией. Для проверки точности решения проводим через найденную точку С прямую D"E", параллельную оси х". Ее длина должна быть равна длине прямой D 2 E 2 (или D 1 E 1).

Рекомендуем почитать

Наверх