Что проекция точки. Проекция точки на плоскость, координаты проекции точки на плоскость

Сказки  20.03.2024
Сказки 

Глава 6. ПРОЕКЦИИ ТОЧКИ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

§ 32. Комплексный чертеж точки

Чтобы построить изображение предмета, сначала изображают отдельные его элементы в виде простейших элементов пространства. Так, изображая геометрическое тело, следует построить его вершины, представленные точками; ребра, представленные прямыми и кривыми линиями; грани, представленные плоскостями и т.д

Правила построения изображений на чертежах в инженерной графике основываются на методе проекций. Одно изображение (проекция) геометрического тела не позволяет судить о его геометрической форме или форме простейших геометрических образов, составляющих это изображение. Таким образом, нельзя судить о положении точки в пространстве по одной ее проекции; положение ее в пространстве определяется двумя проекциями.

Рассмотрим пример построения проекции точки А, расположенной в пространстве двугранного угла (рис. 60). Одну из плоскостей проекции расположим горизонтально, назовем ее горизонтальной плоскостью проекций и обозначим буквой П 1 . Проекции элементов


пространства на ней будем обозначать с индексом 1: А 1 , а 1 , S 1 ... и называть горизонтальными проекциями (точки, прямой, плоскости).

Вторую плоскость расположим вертикально перед наблюдателем, перпендикулярно первой, назовем ее вертикальной плоскостью проекций и обозначим П 2 . Проекции элементов пространства на ней будем обозначать с индексом 2: А 2 , 2 и называть фронтальными проекциями (точки, прямой, плоскости). Линию пересечения плоскостей проекций назовем осью проекций.

Спроецируем точку А ортогонально на обе плоскости проекций:

АА 1 _|_ П 1 ;AА 1 ^П 1 =A 1 ;

АА 2 _|_ П 2 ;AА 2 ^П 2 =A 2 ;

Проецирующие лучи АА 1 и АА 2 взаимно перпендикулярны и создают в пространстве проецирующую плоскость АА 1 АА 2 , перпендикулярную обеим сторонам проекций. Эта плоскость пересекает плоскости проекций по линиям, проходящим через проекции точки А.

Чтобы получить плоский чертеж, совместим горизонтальную плоскость проекций П 1 с фронтальной плоскостью П 2 вращением вокруг оси П 2 /П 1 (рис. 61, а). Тогда обе проекции точки окажутся на одной линии, перпендикулярной оси П 2 /П 1 . Прямая А 1 А 2 , соединяющая горизонтальную А 1 и фронтальную А 2 проекции точки, называется вертикальной линией связи.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Две связанные между собой ортогональные проекции точки однозначно определяют ее положение относительно плоскостей проекций. Если определить положение точки а относительно этих плоскостей (рис. 61, б) ее высотой h (АА 1 =h) и глубиной f(AA 2 =f), то эти величины на комплексном чертеже существуют как отрезки вертикальной линии связи. Это обстоятельство позволяет легко реконструировать чертеж, т. е. определить по чертежу положение точки относительно плоскостей проекций. Для этого достаточно в точке А 2 чертежа восстановить перпендикуляр к плоскости чертежа (считая ее фронтальной) длиной, равной глубине f . Конец этого перпендикуляра определит положение точки А относительно плоскости чертежа.

60.gif

Изображение:

61.gif

Изображение:

7. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

4. Как называется расстояние, определяющее положение точки относительно плоскости проекций П 1 , П 2 ?

7. Как построить дополнительную проекцию точки на плоскости П 4 _|_ П 2 , П 4 _|_ П 1 , П 5 _|_ П 4 ?

9. Как можно построить комплексный чертеж точки по ее координатам?

33. Элементы трехпроекционного комплексного чертежа точки

§ 33. Элементы трехпроекционного комплексного чертежа точки

Для определения положения геометрического тела в пространстве и получения дополнительных сведений на их изображениях может возникнуть необходимость в построении третьей проекции. Тогда третью плоскость проекций располагают справа от наблюдателя перпендикулярно одновременно горизонтальной плоскости проекций П 1 и фронтальной плоскости проекций П 2 (рис. 62, а). В результате пересечения фронтальной П 2 и профильной П 3 плоскостей проекций получаем новую ось П 2 /П 3 , которая располагается на комплексном чертеже параллельно вертикальной линии связи A 1 A 2 (рис. 62, б). Третья проекция точки А - профильная - оказывается связанной с фронтальной проекцией А 2 новой линией связи, которую называют горизонталь-

Рис. 62

ной. Фронтальная и профильная проекции точки всегда лежат на одной горизонтальной линии связи. Причем A 1 A 2 _|_ А 2 А 1 и А 2 А 3 , _| _ П 2 /П 3 .

Положение точки в пространстве в этом случае характеризуется ее широтой - расстоянием от нее до профильной плоскости проекций П 3 , которое обозначим буквой р.

Полученный комплексный чертеж точки называется трехпроек-ционным.

В трехпроекционном чертеже глубина точки АА 2 проецируется без искажений на плоскости П 1 и П 2 (рис. 62, а). Это обстоятельство позволяет построить третью - фронтальную проекцию точки А по ее горизонтальной А 1 и фронтальной А 2 проекциям (рис. 62, в). Для этого через фронтальную проекцию точки нужно провести горизонтальную линию связи A 2 A 3 _|_A 2 A 1 . Затем в любом месте на чертеже провести ось проекций П 2 /П 3 _|_ А 2 А 3 , измерить глубину f точки на горизонтальном поле проекции и отложить ее по горизонтальной линии связи от оси проекций П 2 /П 3 . Получим профильную проекцию А 3 точки А.

Таким образом, на комплексном чертеже, состоящем из трех ортогональных проекций точки, две проекции находятся на одной линии связи; линии связи перпендикулярны соответствующим осям проекций; две проекции точки вполне определяют положение ее третьей проекции.

Необходимо отметить, что на комплексных чертежах, как правило, не ограничивают плоскости проекций и положение их задают осями (рис. 62, в). В тех случаях, когда условиями задачи этого не требу-

ется, проекции точек могут быть даны без изображения осей (рис. 63, а, б). Такая система называется безосновой. Линии связи могут также проводиться с разрывом (рис. 63, б).

62.gif

Изображение:

63.gif

Изображение:

34. Положение точки в пространстве трехмерного угла

§ 34. Положение точки в пространстве трехмерного угла

Расположение проекций точек на комплексном чертеже зависит от положения точки в пространстве трехмерного угла. Рассмотрим некоторые случаи:

  • точка расположена в пространстве (см. рис. 62). В этом случае она имеет глубину, высоту и широту;
  • точка расположена на плоскости проекций П 1 - она не имеет высоты, П 2 - не имеет глубины, Пз - не имеет широты;
  • точка расположена на оси проекций, П 2 /П 1 не имеет глубины и высоты, П 2 /П 3 - не имеет глубины и широты и П 1 /П 3 не имеет высоты и широты.

35. Конкурирующие точки

§ 35. Конкурирующие точки

Две точки в пространстве могут быть расположены по-разному. В отдельном случае они могут быть расположены так, что проекции их на какой-нибудь плоскости проекций совпадают. Такие точки называются конкурирующими. На рис. 64, а приведен комплексный чертеж точек А и В. Они расположены так, что проекции их совпадают на плоскости П 1 [А 1 == В 1 ]. Такие точки называются горизонтально конкурирующими. Если проекции точек A и В совпадают на плоскости

П 2 (рис. 64, б), они называются фронтально конкурирующими. И если проекции точек А и В совпадают на плоскости П 3 [А 3 == B 3 ] (рис. 64, в), они называются профильно конкурирующими.

По конкурирующим точкам определяют видимость на чертеже. У горизонтально конкурирующих точек будет видима та, у которой больше высота, у фронтально конкурирующих - та, у которой больше глубина, и у профильно конкурирующих - та, у которой больше широта.

64.gif

Изображение:

36. Замена плоскостей проекций

§ 36. Замена плоскостей проекций

Свойства трехпроекционного чертежа точки позволяют по горизонтальной и фронтальной ее проекциям строить третью на другие плоскости проекций, введенные взамен заданных.

На рис. 65, а показаны точка А и ее проекции - горизонтальная А 1 и фронтальная А 2 . По условиям задачи необходимо произвести замену плоскостей П 2 . Новую плоскость проекции обозначим П 4 и расположим перпендикулярно П 1 . На пересечении плоскостей П 1 и П 4 получим новую ось П 1 /П 4 . Новая проекция точки А 4 будет расположена на линии связи, проходящей через точку А 1 и перпендикулярно оси П 1 /П 4 .

Поскольку новая плоскость П 4 заменяет фронтальную плоскость проекции П 2 , высота точки А изображается одинаково в натуральную величину и на плоскости П 2 , и на плоскости П 4 .

Это обстоятельство позволяет определить положение проекции A 4 , в системе плоскостей П 1 _|_ П 4 (рис. 65, б) на комплексном чертеже. Для этого достаточно измерить высоту точки на заменяемой плоско-

сти проекции П 2 , отложить ее на новой линии связи от новой оси проекций - и новая проекция точки А 4 будет построена.

Если новую плоскость проекций ввести взамен горизонтальной плоскости проекций, т. е. П 4 _|_ П 2 (рис. 66, а), тогда в новой системе плоскостей новая проекция точки будет находиться на одной линии связи с фронтальной проекцией, причем А 2 А 4 _|_. В этом случае глубина точки одинакова и на плоскости П 1 , и на плоскости П 4 . На этом основании строят А 4 (рис. 66, б) на линии связи А 2 А 4 на таком расстоянии от новой оси П 1 /П 4 на каком А 1 находится от оси П 2 /П 1 .

Как уже отмечалось, построение новых дополнительных проекций всегда связано с конкретными задачами. В дальнейшем будет рассмотрен ряд метрических и позиционных задач, решаемых с применением метода замены плоскостей проекций. В задачах, где введение одной дополнительной плоскости не даст желаемого результата, вводят еще одну дополнительную плоскость, которую обозначают П 5 . Ее располагают перпендикулярно уже введенной плоскости П 4 (рис. 67, а), т. е. П 5 П 4 и производят построение, аналогичное ранее рассмотренным. Теперь расстояния измеряют на заменяемой второй из основных плоскостей проекций (на рис. 67, б на плоскости П 1) и откладывают их на новой линии связи А 4 А 5 , от новой оси проекций П 5 /П 4 . В новой системе плоскостей П 4 П 5 получают новый двухпроекционный чертеж, состоящий из ортогональных проекций А 4 и А 5 , связанных линией связи

Краткий курс начертательной геометрии

Лекции предназначены для студентов инженерно–технических специальностей

Метод Монжа

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.
Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей

Рисунок 1.1 Точка в системе трех плоскостей проекций

Модель трех плоскостей проекций показана на рисунке 1.1. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками (А и В). Рассмотрим две точки в пространстве А и В (рис. 2.1). Через эти точки можно провести прямую линию получим отрезок . Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: <; <; <.

Рисунок 2.1 Определение положения прямой по двум точкам

2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

В зависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.3.1).

2. Прямые параллельные плоскостям проекций, занимают частное положение в пространстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.3.2).

Рисунок 3.2 Горизонтальная прямая

2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.3.3).

Рисунок 3.3 Фронтальная прямая

2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис. 3.4).

Рисунок 3.4 Профильная прямая

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Фронтально-проецирующая прямая - АВ (рис. 3.5).

Рисунок 3.5 Фронтально-проецирующая прямая

3.2. Профильно проецирующая прямая - АВ (рис.3.6).

Рисунок 3.6 Профильно-проецирующая прямая

3.3. Горизонтально-проецирующая прямая - АВ (рис.3.7).

Рисунок 3.7 Горизонтально-проецирующая прямая

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости: 1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки; 2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Способы графического задания плоскостей Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой линии (рис.4.1).

Рисунок 4.1 Плоскость заданная тремя точками, не лежащими на одной прямой

2. Прямой линией и точкой, не принадлежащей этой прямой (рис.4.2).

Рисунок 4.2 Плоскость заданная прямой линией и точкой, не принадлежащей этой линии

3. Двумя пересекающимися прямыми (рис.4.3).

Рисунок 4.3 Плоскость заданная двумя пересекающимися прямыми линиями

4. Двумя параллельными прямыми (рис.4.4).

Рисунок 4.4 Плоскость заданная двумя параллельными прямыми линиями

Различное положение плоскости относительно плоскостей проекций

В зависимости от положения плоскости по отношению к плоскостям проекций она может занимать как общее, так и частные положения.

1. Плоскость не перпендикулярная ни одной плоскости проекций называется плоскостью общего положения. Такая плоскость пересекает все плоскости проекций (имеет три следа: - горизонтальный S 1; - фронтальный S 2; - профильный S 3). Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций. Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях (рис.5.1).

2. Плоскости перпендикулярные плоскостям проекций – занимают частное положение в пространстве и называются проецирующими. В зависимости от того, какой плоскости проекций перпендикулярна заданная плоскость, различают:

2.1. Плоскость, перпендикулярная горизонтальной плоскости проекций (S ^П1) , называется горизонтально-проецирующей плоскостью. Горизонтальная проекция такой плоскости представляет собой прямую линию, которая одновременно является её горизонтальным следом. Горизонтальные проекции всех точек любых фигур в этой плоскости совпадают с горизонтальным следом (рис.5.2).

Рисунок 5.2 Горизонтально-проецирующая плоскость

2.2. Плоскость, перпендикулярная фронтальной плоскости проекций (S ^П2) - фронтально-проецирующая плоскость. Фронтальной проекцией плоскости S является прямая линия, совпадающая со следом S 2 (рис.5.3).

Рисунок 5.3 Фронтально-проецирующая плоскость

2.3. Плоскость, перпендикулярная профильной плоскости (S ^П3) - профильно-проецирующая плоскость. Частным случаем такой плоскости является биссекторная плоскость (рис.5.4).

Рисунок 5.4 Профильно-проецирующая плоскость

3. Плоскости параллельные плоскостям проекций – занимают частное положение в пространстве и называются плоскостями уровня. В зависимости от того, какой плоскости параллельны исследуемая плоскость, различают:

3.1. Горизонтальная плоскость - плоскость параллельная горизонтальной плоскости проекций (S //П1) - (S ^П2, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П1 без искажения, а на плоскости П2 и П3 в прямые - следы плоскости S 2 и S 3 (рис.5.5).

Рисунок 5.5 Горизонтальная плоскость

3.2. Фронтальная плоскость - плоскость параллельная фронтальной плоскости проекций (S //П2), (S ^П1, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П2 без искажения, а на плоскости П1 и П3 в прямые - следы плоскости S 1 и S 3 (рис.5.6).

Рисунок 5.6 Фронтальная плоскость

3.3. Профильная плоскость - плоскость параллельная профильной плоскости проекций (S //П3), (S ^П1, S ^П2). Любая фигура в этой плоскости проецируется на плоскость П3 без искажения, а на плоскости П1 и П2 в прямые - следы плоскости S 1 и S 2 (рис.5.7).

Рисунок 5.7 Профильная плоскость

Следы плоскости

Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости.

Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой(как для построения любой прямой). На рисунке 5.8 показано нахождение следов плоскости S (АВС). Фронтальный след плоскости S 2, построен, как прямая соединяющая две точки 12 и 22, являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости S . Горизонтальный следS 1 – прямая, проходящая через горизонтальный след прямой АВ и S x. Профильный следS 3 – прямая соединяющая точки (S y и S z) пересечения горизонтального и фронтального следов с осями.

Рисунок 5.8 Построение следов плоскости

Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость Q и установим относительное положение двух прямых a и b, последняя из которых является линией пересечения вспомогательной секущей плоскости Q и данной плоскости T(рис.6.1).

Рисунок 6.1 Метод вспомогательных секущих плоскостей

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости T, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость T. Таким образом возможны три случая относительного расположения прямой и плоскости: Прямая принадлежит плоскости; Прямая параллельна плоскости; Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости. Рассмотрим каждый случай.

Прямая линия, принадлежащая плоскости

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.6.2).

Задача. Дана плоскость (n,k) и одна проекция прямой m2. Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k. Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k. Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.6.3).

Задача. Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k. Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1. Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.3 Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Взаимное расположение точки и плоскости

Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет. Если точка принадлежит плоскости то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну. Рассмотрим пример (рис.6.8): Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(a//b).

Задача. Дано: плоскость T(а,в) и проекция точки А2. Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а. Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2. Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А.

Рисунок 6.8. Точка, принадлежащая плоскости

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.7.1). Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В. Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d. Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой. Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой d||a, с||b; d1||a1,с1||b1; d2||a2 ,с2||b2; d3||a3,с3||b3.

Рисунок 7.1. Параллельные плоскости

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей. Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.7.2).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая T. Требуется построить линию пересечения плоскостей. Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью T - точка D, прямой (AС) -F. Отрезок определяет линию пересечения плоскостей. Так как T - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости T1, таким образом остается только построить недостающие проекции на П2 и П3.

Рисунок 7.2. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью

Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(m,n) и b (ABC) (рис.7.3).

Рисунок 7.3. Пересечение плоскостей общего положения

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b - прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.7.4).

Рисунок 7.4. Взаимно перпендикулярные плоскости

Метод плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 8.1). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Рисунок 8.1 Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

Метод вращения вокруг оси перпендикулярной плоскости проекций

Плоскости носитель траекторий перемещения точек параллельны плоскости проекций. Траектория - дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рис. 8.2), выберем ось вращения (i) перпендикулярную горизонтальной плоскости проекций и проходящую через В1. Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А1 переместиться в А"1, а точка В не изменит своего положения. Положение точки А"2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А"1. Полученная проекция В2 А"2 определяет натуральную величину самого отрезка.

Рисунок 8.2 Определение натуральной величины отрезка методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций

Метод вращения вокруг оси параллельной плоскости проекций

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рис.8.3). Рассмотрим две проекции пересекающихся прямых а и в которые пересекаются в точке К. Для то чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций. Воспользуемся способом вращения вокруг линии уровня - горизонтали. Проведем произвольно фронтальную проекцию горизонтали h2 параллельно оси Ох, которая пересекает прямые в точках 12 и 22 . Определив проекции 11 и 11, построим горизонтальную проекцию горизонтали h1 . Траектория движения всех точек при вращении вокруг горизонтали - окружность, которая проецируется на плоскость П1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

Рисунок 8.3 Определение угла между пересекающимися прямыми, вращением вокруг оси параллельной горизонтальной плоскости проекций

Таким образом, траектория движения точки К1 определена прямой К1О1, точка О -центр окружности - траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО.Продолжим прямую К1О1 так чтобы |О1К"1|=|КО| . Точка К"1 соответствует точке К, когда прямые а и в лежат в плоскости параллельной П1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К"1 и точки 11 и 21 проведем прямые, которые лежат теперь в плоскости параллельной П1, а следовательно и угол фи - натуральная величина угла между прямыми а и в.

Метод замены плоскостей проекций

Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П1 и П2 новыми плоскостями П4 (рис. 8.4). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рис. 8.5). Последовательный переход от одной системы плоскостей проекций другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рис. 8.4). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости. Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в новой системе плоскостей проекция отрезка А4В4 будет натуральной величиной отрезка АВ.

Рисунок 8.4. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

Задача 2: Определить расстояние от точки C до прямой общего положения, заданной отрезком АВ (рис. 8.5).

Рисунок 8.5. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

Цели:

  • Изучение правил построения проекций точек на поверхности предмета и чтения чертежей.
  • Развивать пространственное мышление, умение анализировать геометрическую форму предмета.
  • Воспитывать трудолюбие, умение сотрудничать при работе в группах, интерес к предмету.

ХОД УРОКА

I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ.

II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ.

ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ (НАСТРОЕНИЕ)

III ЭТАП. ИНДИВИДУАЛЬНАЯ РАБОТА.

I ЭТАП. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

1) Учитель: Проверьте свое рабочее место, всё ли на месте? Все готовы к работе?

ВЗДОХНУЛИ ГЛУБОКО, НА ВЫДОХЕ ЗАДЕРЖАЛИ ДЫХАНИЕ, ВЫДОХНУЛИ.

Определите свое настроение на начало урока по схеме (такая схема лежит у каждого на столе)

Я ЖЕЛАЮ ВАМ УДАЧИ.

2) Учитель: Практическая работа по теме “ Проекции вершин, ребер, граней” показала, что есть ребята, которые допускают ошибки при проецировании. Путаются, какая из двух совпадающих точек на чертеже является видимой вершиной, а какая невидимой; когда ребро параллельно плоскости, а когда перпендикулярно. То же самое с гранями.

Чтобы исключить повторение ошибок, по консультирующей карточке выполните необходимые задания и исправьте ошибки в практической работе (от руки). И работая, помните:

“ОШИБАТЬСЯ МОЖЕТ КАЖДЫЙ, ОСТАВАТЬСЯ ПРИ СВОЕЙ ОШИБКЕ – ТОЛЬКО БЕЗУМНЫЙ”.

А тот, кто хорошо усвоил тему, поработают в группах с творческими заданиями (см. Приложение 1 ).

II ЭТАП. ФОРМИРОВАНИЕ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ

1) Учитель: На производстве встречаются множество деталей, которые крепятся друг к другу определенным образом.
Например:
Крышка рабочего стола крепится к вертикальным стойкам. Обратите внимание на стол, за которым вы находитесь, как и чем крепятся между собой крышка и стойки?

Ответ: Болтом.

Учитель: А что для болта необходимо?

Ответ: Отверстие.

Учитель: Действительно. А чтобы отверстие выполнить, надо знать его расположение на изделие. Изготавливая стол, столяр не может каждый раз обращаться к заказчику. Значит, чем необходимо обеспечить столяра?

Ответ: Чертежом.

Учитель: Чертеж!? А что мы с вами называем чертежом?

Ответ: Чертежом называется изображение предмета прямоугольными проекциями в проекционной связи. По чертежу можно представить геометрическую форму и конструкцию изделия.

Учитель: Мы с вами выполнили прямоугольные проекции, а дальше? Сможем ли мы по одним проекциям определить расположение отверстий? Что нам необходимо еще знать? Чему научиться?

Ответ: Строить точки. Находить проекции этих точек на всех видах.

Учитель: Молодцы! Это и есть цель нашего урока, и тема: Построение проекций точек на поверхности предмета. Запишите тему урока в тетрадь.
Мы с вами знаем, что любая точка или отрезок на изображении предмета являются проекцией вершины, ребра, грани, т.е. каждый вид – это изображение не с одной стороны (гл. вид, вид сверху, вид слева), а всего предмета.
Для того, чтобы правильно находить проекции отдельных точек, лежащих на гранях, нужно прежде всего найти проекции этой грани, а затем при помощи линий связи отыскать проекции точек.

(Смотрим чертеж на доске, работаем в тетради, где выполнены дома 3 проекции такой же детали).

– Открыли тетрадь с выполненным чертежом (Объяснение построения точек на поверхности предмета с наводящими вопросами на доске, а учащиеся закрепляют в тетради.)

Учитель: Рассмотрим точку В . Какой плоскости параллельна грань с этой точкой?

Ответ: Грань параллельна фронтальной плоскости.

Учитель: Задаемся проекцией точки b’ на фронтальной проекции. Проводим вниз от точки b’ вертикальную линию связи до горизонтали проекции. Где будет находиться горизонтальная проекция точки В ?

Ответ: На пересечении с горизонтальной проекцией грани, которая спроецировалась в ребро. И находится внизу проекции (вида).

Учитель: Профильная проекция точки b’’ , где будет находиться? Как мы ее найдем?

Ответ: На пересечении горизонтальной линии связи из b’ с вертикальным ребром справа. Это ребро и есть проекция грани с точкой В.

К ДОСКЕ ВЫЗЫВАЮТСЯ ЖЕЛАЮЩИЕ ПОСТРОИТЬ СЛЕДУЮЩУЮ ПРОЕКЦИЮ ТОЧКИ.

Учитель: Проекции точки А так же находятся с помощью линий связи. Какой плоскости параллельна грань с точкой А ?

Ответ: Грань параллельна профильной плоскости. Задаемся на профильной проекции точкой а’’ .

Учитель: На какой проекции грань спроецировалась в ребро?

Ответ: На фронтальной и горизонтальной. Проведем горизонтальную линию связи до пересечения с вертикальным ребром слева на фронтальной проекции, получим точку а’ .

Учитель: А как найти проекцию точки А на горизонтальной проекции? Ведь линии связи из проекции точек а’ и а’’ не пересекают проекцию грани (ребро) на горизонтальной проекции слева. Что нам может помочь?

Ответ: Можно воспользоваться постоянной прямой (она определяет место вида слева) из а’’ проводят вертикальную линию связи до пересечения с постоянной прямой. Из точки пересечения проводят горизонтальную линию связи, до пересечения с вертикальным ребром слева. (Это и есть грань с точкой А) и обозначает проекцию точкой а .

2) Учитель: У каждого на столе лежит карточка-задание, с прикреплённой калькой. Рассмотрите чертёж, теперь попробуйте самостоятельно, без перечерчивания проекций, найти на чертеже заданные проекции точек.

– Найдите в учебнике стр. 76 рис. 93. Проверьте себя. Кто выполнил правильно – оценка "5""; одна ошибка – ‘’4’’; две – ‘’3’’.

(Оценки выставляют сами учащиеся в листе самоконтроля).

– Собрать карточки для проверки.

3) Работа в группах: Время ограничено: 4мин. + 2 мин. проверки. (Две парты с учащимися объединяются, и внутри группы выбирается руководитель).

На каждую группу раздаются задания в 3-х уровнях. Учащиеся выбирают задания по уровням, (по своему желанию). Решают задачи на построение точек. Обсуждают построение под контролем руководителя. Затем на доске с помощью кодоскопа высвечивается правильный ответ. Все проверяют правильность выполнения проецирования точек. При помощи руководителя группы выставляют оценки на заданиях и в листах самоконтроля (см. Приложение 2 и Приложение 3 ).

ЗДОРОВЬЕСБЕРЕГАЮЩАЯ ПАУЗА. РЕФЛЕКСИЯ

“Поза фараона” – сесть на край стула, выпрямить спину, руки согнуть в локтях, ноги скрестить и поставить на носочки. Вздохнуть, напрячь все мышцы тела на задержке дыхания, выдохнуть. Сделать 2-3 раза. Глаза сильно зажать, до звездочек, открыть. Отметить свое настроение.

III ЭТАП. ПРАКТИЧЕСКАЯ ЧАСТЬ. (Индивидуальные задания)

Предлагаются карточки-задания на выбор с разным уровнем. Учащиеся самостоятельно выбирают по своим силам вариант. Найти проекции точек на поверхности предмета. Работы сдаются и оцениваются к следующему уроку. (См. Приложение 4 , Приложение 5 , Приложение 6 ).

IV ЭТАП. ЗАКЛЮЧИТЕЛЬНЫЙ

1) Задание на дом. (Инструктаж). Выполняется по уровням:

В – понимание, на "3". Упр.1 рис. 94а стр. 77 – по заданию в учебнике: достроить недостающие проекции точек на данных проекциях.

Б – применение, на "4". Упр.1 рис.94 а, б. достроить не достающие проекции и обозначить вершины на наглядном изображении в 94а и 94б.

А – анализ, на "5". (Повышенной сложности.) Упр. 4 рис.97 – построить не достающие проекции точек и обозначить их буквами. Наглядного изображения нет.

2) Рефлексивный анализ.

  1. Определите настроение в конце урока, отметьте в листе самоконтроля любым знаком.
  2. Что нового узнали сегодня на уроке?
  3. Какая форма работы наиболее эффективна для вас: групповая, индивидуальная и вы хотели бы, чтобы она повторялась на следующем уроке?
  4. Собрать листки самоконтроля.

3) “Ошибающийся учитель”

Учитель: Вы научились строить проекции вершин, ребер, граней и точки на поверхности предмета, соблюдая все правила построения. Но вот вам передали чертеж, где есть ошибки. Попробуйте теперь себя в роли учителя. Найдите сами ошибки, если найдете все 8–6 ошибок, то оценка соответственно “5”; 5–4 ошибки –“4”, 3 ошибки – “3”.

Ответы:

Аппарат проецирования

Аппарат проецирования (рис. 1) включает в себя три плоскости проекций:

π 1 – горизонтальная плоскость проекций;

π 2 – фронтальная плоскость проекций;

π 3 – профильная плоскость проекций.

Плоскости проекций располагаются взаимно перпендикулярно (π 1 ^ π 2 ^ π 3 ), а их линии пересечения образуют оси:

Пересечение плоскостей π 1 и π 2 образуют ось (π 1 π 2 = );

Пересечение плоскостей π 1 и π 3 образуют ось 0Y (π 1 π 3 = 0Y );

Пересечение плоскостей π 2 и π 3 образуют ось 0Z (π 2 π 3 = 0Z ).

Точка пересечения осей (ОХ∩OY∩OZ=0), считается точкой начала отсчета (точка 0).

Так как плоскости и оси взаимно перпендикулярны, то такой аппарат аналогичен декартовой системе координат.

Плоскости проекций все пространство делят на восемь октантов (на рис. 1 они обозначены римскими цифрами). Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом октанте.

Проецирование ортогональное с центрами проецирования S 1 , S 2 и S 3 соответственно для горизонтальной, фронтальной и профильной плоскостей проекций.

А .

Из центров проецирования S 1 , S 2 и S 3 выходят проецирующие лучи l 1 , l 2 и l 3 А

- А 1 А ;

- А 2 – фронтальная проекция точки А ;

- А 3 – профильная проекция точки А .

Точка в пространстве характеризуется своими координатами A (x,y,z ). Точки A x , A y и A z соответственно на осях 0X , 0Y и 0Z показывают координаты x, y и z точки А . На рис. 1 даны все необходимые обозначения и показаны связи между точкой А пространства, её проекциями и координатами.

Эпюр точки

Чтобы получить эпюр точки А (рис. 2), в аппарате проецирования (рис. 1) плоскость π 1 А 1 π 2 . Затем плоскость π 3 с проекцией точки А 3 , вращают против часовой стрелки вокруг оси 0Z , до совмещения её с плоскостью π 2 . Направление поворотов плоскостей π 2 и π 3 показано на рис. 1 стрелками. При этом прямые А 1 А х и А 2 А х перпендикуляре А 1 А 2 , а прямые А 2 А х и А 3 А х станут располагаться на общем к оси 0Z перпендикуляре А 2 А 3 . Эти прямые в дальнейшем будем называть соответственно вертикальной и горизонтальной линиями связей.

Следует отметить, что при переходе от аппарата проецирования к эпюру проектируемый объект исчезает, но вся информация о его форме, геометрических размерах и месте его положения в пространстве сохраняются.



А (x A , y A , z A x A , y A и z A в следующей последовательности (рис. 2). Эта последовательность называется методикой построения эпюра точки.

1. Ортогонально вычерчиваются оси OX, OY и OZ.

2. На оси OX x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX

А х по направлению оси OY откладывается численное значение координаты y A точки А А 1 на эпюре.

А х по направлению оси OZ откладывается численное значение координаты z A точки А А 2 на эпюре.

6. Через точку А 2 параллельно оси OX проводится горизонтальная линия связи. Пересечение этой линии и оси OZ даст положение точки А z .

7. На горизонтальной линии связи от точки А z по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение профильной проекции точки А 3 на эпюре.

Характеристика точек

Все точки пространства подразделяются на точки частного и общего положений.

Точки частного положения. Точки, принадлежащие аппарату проецирования, называются точками частного положения. К ним относятся точки, принадлежащие плоскостям проекций, осям, началу координат и центрам проецирования. Характерными признаками точек частного положения являются:

Метаматематический – одна, две или все численные значения координат равны нулю и (или) бесконечности;

На эпюре – две или все проекции точки располагаются на осях и (или) располагаются в бесконечности.



Точки общего положения. К точкам общего положения относятся точки, не принадлежащие аппарату проецирования. Например, точка А на рис. 1 и 2.

В общем случае численные значения координат точки характеризует ее удаление от плоскости проекций: координата х от плоскости π 3 ; координата y от плоскости π 2 ; координата z от плоскости π 1 . Следует отметить, что знаки при численных значениях координат указывают на направление удаления точки от плоскостей проекций. В зависимости от сочетания знаков при численных значениях координат точки зависит в каком из октанов она находится.

Метод двух изображений

На практике, кроме метода полного проецирования используют метод двух изображений. Он отличается тем, что в этом методе исключается третья проекция объекта. Для получения аппарата проецирования метода двух изображений из аппарата полного проецирования исключается профильная плоскость проекций с ее центром проецирования (рис. 3). Кроме того, на оси назначается начало отсчета (точка 0 ) и из него перпендикулярно оси в плоскостях проекций π 1 и π 2 проводят оси 0Y и 0Z соответственно.

В этом аппарате все пространство делится на четыре квадранта. На рис. 3 они обозначены римскими цыфрами.

Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом квадранте.

Рассмотрим работу аппарата на примере проецирования точки А .

Из центров проецирования S 1 и S 2 выходят проецирующие лучи l 1 и l 2 . Эти лучи проходят через точку А и пересекаясь с плоскостями проекций образуют ее проекции:

- А 1 – горизонтальная проекция точки А ;

- А 2 – фронтальная проекция точки А .

Чтобы получить эпюр точки А (рис. 4), в аппарате проецирования (рис. 3) плоскость π 1 с полученной проекцией точки А 1 вращают по часовой стрелке вокруг оси , до совмещения её с плоскостью π 2 . Направление поворота плоскости π 1 показана на рис. 3 стрелками. При этом на эпюре точки полученной методом двух изображений остается только одна вертикальная линия связи А 1 А 2 .

На практике построение эпюра точки А (x A , y A , z A ) осуществляется по численным значениям ее координат x A , y A и z A в следующей последовательности (рис. 4).

1. Вычерчивается ось OX и назначается начало отсчета (точка 0 ).

2. На оси OX откладывается численное значение координаты x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX проводится вертикальная линия связи.

4. На вертикальной линии связи от точки А х по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение горизонтальной проекции точки А 1 OY не вычерчивается, а предполагается, что ее положительные значения располагаются ниже оси OX , а отрицательные выше.

5. На вертикальной линии связи от точки А х по направлению оси OZ откладывается численное значение координаты z A точки А и определяется положение фронтальной проекции точки А 2 на эпюре. Следует отметить, что на эпюре ось OZ не вычерчивается, а предполагается, что ее положительные значения располагаются выше оси OX , а отрицательные ниже.

Конкурирующие точки

Точки на одном проецирующем луче называются конкурирующими. Они в направлении проецирующего луча имеют общую для них проекцию, т.е. их проекции тождественно совпадают. Характерным признаком конкурирующих точек на эпюре является тождественное совпадение их одноименных проекций. Конкуренция заключается в видимости этих проекций относительно наблюдателя. Говоря другими словами, в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, а проекция другой точки – невидима.

На пространственной модели проецирования (рис. 5) из двух конкурирующих точек А и В видима точка А по двум взаимно дополняющим признакам. Судя по цепочке S 1 →А→В точка А ближе к наблюдателю, чем точка В . И, соответственно, – дальше от плоскости проекций π 1 (т.е. z A > z A ).

Рис. 5 Рис.6

Если видима сама точка A , то видима и её проекция A 1 . По отношению к совпадающей с ней проекцией B 1 . Для наглядности и при необходимости на эпюре невидимые проекции точек принято заключать в скобки.

Уберем на модели точки А и В . Останутся их совпадающие проекции на плоскости π 1 и раздельные проекции – на π 2 . Условно оставим и фронтальную проекцию наблюдателя (⇩), находящегося в центре проецирования S 1 . Тогда по цепочке изображений ⇩ → A 2 B 2 можно будет судить о том, что z A > z B и что видима и сама точка А и её проекция А 1 .

Аналогично рассмотрим конкурирующие точки С и D по видимости относительно плоскости π 2 . Поскольку общий проецирующий луч этих точек l 2 параллелен оси 0Y , то признак видимости конкурирующих точек С и D определяется неравенством y C > y D . Следовательно, что точка D закрыта точкой С и соответственно проекция точки D 2 будет закрыта проекцией точки С 2 на плоскости π 2 .

Рассмотрим, как определяется видимость конкурирующих точек на комплексном чертеже (рис. 6).

Судя по совпадающим проекциям А 1 В 1 сами точки А и В находятся на одном проецирующем луче, параллельном оси 0Z . Значит сравнению подлежат координаты z A и z B этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае z A > z B . Из этого следует, что видима проекция А 1 .

Точки C и D на рассматриваемом комплексном чертеже (рис. 6) так же находятся на одном проецирующем луче, но только параллельном оси 0Y . Поэтому из сравнения y C > y D делаем вывод, что видима проекция С 2 .

Общее правило . Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

Наверх