Общий органический углерод в воде. Глобальный круговорот углерода

Теория успеха 21.12.2023

Благодаря содержанию углеродсодержащих органических соединений в поверхностных природных водных источниках можно с достаточной точностью определить совокупную концентрацию органики в конкретном водоеме. Показатель «общий органический углерод» (ООУ) численно равен пятидесяти процентам от всего объема веществ органического происхождения, находящихся в составе воды. В пробах, взятых из разных источников, значения ООУ колеблются в пределах 1-20 мг/л, а в образцах воды из богатых гумусовыми веществами болотистых водоемов его уровень достигает сотен миллиграмм на литр. Величина ООУ в настоящее время нормируется только в отношении бутилированной воды СанПиН 2.1.4.1116-02: 5 мг/л - категория высшая, первая - 10 миллиграмм на литр воды.

За рубежом для данной величины принято обозначение ТОС - Total Organic Carbon. Иностранные специалисты полагают, что именно численное выражение общего органического углерода служит наиболее достоверным индикатором суммарной насыщенности воды органическими соединениями. Он включен в перечень интегральных водных характеристик наравне с БПК, окисляемостью бихроматной, а также перманганатной. Содержание ООУ зачастую составляет треть от объема ХПК. Однако это характерно только для стоков бытового происхождения, а также для производственных сбросов, по составу аналогичных бытовым сточным водам.

Как показывает практика, во всех природных водных объектах Москвы и региона уровень органического углерода приблизительно соответствует 100-120% значения окисляемости перманганатной. При этом БПК 5 ниже ООУ в 4-6 раз.

Хлорсодержащие дезинфеканты, используемые в процессе обеззараживания питьевой воды, взаимодействуя с органикой природного происхождения, образуют токсичные продукты. Их концентрация зависит от насыщенности воды органическими соединениями. Показатель ООУ был включен и в один из проектов по техническому регламентированию питьевого водоснабжения и воды питьевого назначения с нормативом в 5 мг/л.

Приняты следующие показатели:

Органический углерод общий (ТОС) - содержание углерода в виде органических соединений, присутствующих в воде в растворенном виде и во взвешенном состоянии;

Органический углерод растворенный (DOC) - содержание в воде углерода, находящегося в виде органики (включая тиоцианаты и цианаты), проникающей через мембранный фильтр при фильтрации. Поры мембраны имеют 0,45-миллимикронный диаметр.

Уважаемые господа, если у Вас имеется потребность коррекции показателя «Общий органический углерод» для доведения качества воды до определённых нормативов, сделайте запрос специалистам компании Waterman . Мы разработаем для Вас оптимальную технологическую схему очистки воды.

Его называют основой жизни. Он есть во всех органических соединениях. Только он способен формировать молекулы из миллионов атомов, такие, как ДНК.

Узнали героя ? Это углерод . Число его соединений, известных науке, приближается к 10 000 000.

Столько не наберется у всех остальных, вместе взятых элементов. Не удивительно, что один из двух разделов химии изучает исключительно соединения углерода и проходится в старших классах.

Предлагаем вспомнить школьную программу, а так же, дополнить ее новыми фактами.

Что такое углерод

Во-первых, элемент углерод – составная . В ее новом стандарте, вещество располагается в 14-ой группе.

В устаревшем варианте системы, углерод стоит в главной подгруппе 4-ой группы.

Обозначение элемента – буква С. Порядковый номер вещества – 6, относится к группе неметаллов.

Органический углерод соседствует в природе с минеральным. Так, , и камень фуллерен – 6-ой элемент в чистом виде.

Различия во внешности обусловлены несколькими типами строения кристаллической решетки. От нее зависят и полярные характеристики минерального углерода.

Графит, к примеру, мягок, не зря же добавляется в пишущие карандаши, а всех остальных на Земле. Поэтому, логично рассмотреть свойства самого углерода, а не его модификаций.

Свойства углерода

Начнем со свойств, общих для всех неметаллов. Они электроотрицательны, то есть, оттягивают на себя общие электронные пары, образованные с другими элементами.

Получается, углерод может восстановить оксиды неметаллов до состояния металлов.

Однако, делает это 6-ой элемент лишь при нагреве. В обычных условиях вещество химически инертно.

На внешних электронных уровнях неметаллов больше электронов, чем у металлов.

Именно поэтому, атомы 6-го элемента стремятся достроить толику собственных орбиталей, чем отдавать свои частицы кому-то.

Металлам же, с минимумом электронов на внешних оболочках проще отдать отдаленные частицы, чем перетягивать на себя чужие.

Главная форма 6-го вещества – атом. По идее, речь должна идти о молекуле углерода . Из молекул составлено большинство неметаллов.

Однако, углерод с и – исключения, имеют атомную структуру. Именно за счет нее соединения элементов отличаются высокими температурами плавления.

Еще одно отличительное свойство многих форм углерода – . У того же она максимальна, равна 10-ти баллам по .

Раз разговор зашел о формах 6-го вещества, укажем, что кристаллическая – лишь одна из.

Атомы углерода не всегда выстраиваются в кристаллическую решетку. Встречается аморфная разновидность.

Примеры таковой: — древесный , кокс, стеклоуглерод. Это соединения, но не имеющие упорядоченной структуры.

Если же вещество соединено с другими, могут получиться и газы. Кристаллический углерод переходит в них при температуре в 3700 градусов.

В обычных условиях элемент газообразен, если это, к примеру, оксид углерода .

В народе его именуют угарным газом. Однако, реакция его образования активнее и быстрее, если, все же, поддать жару.

Газообразных соединений углерода с кислородом несколько. Есть еще, к примеру, монооксид.

Этот газ бесцветный и ядовитый, причем, при обычных условиях. Такая окись углерода имеет тройную связь в молекуле.

Но, вернемся к чистому элементу. Будучи довольно инертным в химическом плане, он, все же, может взаимодействовать не только с металлами, но и их оксидами, , и как видно из разговора про газы, с кислородом.

Реакция возможна и с водородом. Углерод вступит во взаимодействие, если «сыграет» один из факторов, или все вместе: температура, аллотропное состояние, дисперсность.

Под последней, подразумевается отношение площади поверхности частиц вещества к занимаемому ими объему.

Аллотропия – возможность нескольких форм одного и того же вещества, то есть, имеется в виду кристаллический, аморфный, или газообразный углерод .

Однако, как не совпадай факторы, с кислотами и щелочами элемент не реагирует вовсе. Игнорирует углерод и почти все галогены.

Чаще всего, 6-ое вещество связывается само с собой, образовывая те самые масштабные молекулы из сотен и миллионов атомов.

Сформированные молекулы, углерода реагируют с еще меньшим числом элементов и соединений.

Применение углерода

Применение элемента и его производных столь же обширно, как их число. Содержание углерода в жизни человека больше, чем может казаться.

Активированный уголь из аптеки – 6-е вещество. в из – он же.

Графит в карандашах – тоже углерод, нужный, так же, в ядерных реакторах и контактах электрических машин.

Метановое топливо тоже в списке. Диоксид углерода нужен для производства и может быть сухим льдом, то есть, хладагентом.

Углекислый газ служит консервантом, заполняя овощные хранилища, а еще, нужен для получения карбонатов.

Последние, используют в строительстве, к примеру, . А карбонат пригождается в мыловарении и стекольном производстве.

Формула углерода соответствует еще и коксу. Он пригождается металлургам.

Кокс служит восстановителем во время переплавки руды, извлечения из нее металлов.

Даже обычная сажа – углерод, используемый в качестве удобрения и наполнителя .

Не задумывались, почему автомобильные шины цвета? Это сажа. Она придает резине прочность.

Сажа, так же, входит в крема для обуви, краски для печати, туши для ресниц. Народное название употребляется не всегда. Промышленники зовут сажу техническим углеродом .

Масса углерода начинает использоваться в сфере нанотехнологий. Сделаны сверхмалые транзисторы, а еще трубки, которые в 6-7 раз прочнее .

Вот вам и неметалл. К наноизысканиям, кстати, подключились ученые из . Из углеродных трубок и графена они создали аэрогель.

Это и прочный материал. Звучит увесисто. Но, на самом деле, аэрогель легче воздуха.

В железо углерод добавляют, чтобы получить так называемую углеродистую сталь. Она тверже обычной.

Однако, массовая доля 6-го элемента в не должна превышать пары, тройки процентов. Иначе, свойства стали идут на спад.

Список можно продолжать бесконечно. Но, где бесконечно брать углерод? Добывают его или синтезируют? На эти вопросы ответим в отдельной главе.

Добыча углерода

Двуокись углерода , метан, отдельно углерод, можно получать химическим путем, то есть, намеренным синтезом. Однако, это не выгодно.

Газ углерод и его твердые модификации проще и дешевле добывать попутно с каменным углем.

Из земных недр этого ископаемого извлекают примерно 2 миллиарда тонн ежегодно. Хватает, чтобы обеспечить мир техническим углеродом.

Что касается , их извлекают из кимбирлитовых трубок. Это вертикальные геологические тела, сцементированные лавой осколки породы.

Именно в таких встречаются . Поэтому, ученые предполагают, что минерал формируется на глубинах в тысячи километров, там же, где и магма.

Месторождения графита, напротив, горизонтальны, располагаются у поверхности.

Поэтому, добыча минерала довольно проста и не затратна. В год из недр извлекают около 500 000 тонн графита.

Чтобы получить активированный уголь, приходится нагреть каменный уголь и обработать струей водяного пара.

Ученые даже разобрались, как воссоздать белки человеческого тела. Их основа – тоже углерод. Азот и водород – аминогруппа, к нему примыкающая.

Нужен, так же, кислород. То есть, белки построены на аминокислоте. Она не у всех на слуху, но для жизни куда важнее остальных.

Популярные серная, азотная, соляная кислоты, к примеру, организму нужны куда меньше.

Так что, углерод – то, за что стоит платить. Узнаем, на сколько велик разброс цен на разные товары из 6-го элемента.

Цена углерода

Для жизни, как несложно понять, углерод бесценен. Что же касается остальных сфер бытия, ценник зависит от наименования продукции и ее качества.

За , к примеру, платят больше, если не содержат сторонних включений.

Образцы аэрогеля, пока, стоят десятки долларов за несколько квадратных сантиметров.

Но, в будущем, производители обещают поставлять материал рулонами и просить недорого.

Технический углерод, то есть, сажа, реализуется по 5-7 рублей за кило. За тонну, соответственно, отдают около 5000-7000 рублей.

Однако, углеродный налог, вводимый в большинстве развитых стран, может обеспечить рост цен.

Углеродную промышленность считают причиной парникового эффекта. Предприятия обязывают платить за выбросы, в частности, CO 2 .

Это главный парниковый газ и, одновременно, индикатор загрязнения атмосферы. Эта информация – ложка дегтя в бочке меда.

Она позволяет понять, что у углерода, как и всего в мире, есть обратная сторона, а не только плюсы.

Органический углерод

(a. organic carbon; н. organischer Kohlenstoff; ф. carbone organique; и. carbono organico ) - , входящий в состав органич. вещества атмосферы, гидросферы и горн. пород. Имеет биогенную природу. Macca C орг в земной коре достигает 7·* 10 15 т, в т.ч. в осадочных породах - 5·* 10 15 т. Кол-во C орг определяется хим., газометрич. и кулонометрич. (автоматич. анализаторами) методами. B процессе катагенеза содержание C орг в породах снижается (на 30-40% к концу апокатагенеза), a доля его в органич. веществе возрастает (от 70% на стадии протокатагенеза до 80% в мезокатагенезе и 90% - в апокатагенезе). B графите и графитизированном органич. веществе она достигает 99%. B пределах одной стадии катагенеза содержание C в составе органич. вещества и величина параметра H/C ат служат показателями типа органич. вещества, в однотипном органич. веществе - уровня его зрелости. Количество C орг - важный показатель неф-тегазоматеринского потенциала пород. B составе концентрированного органич. в-ва O. y, содержится в кол-ве 85-87% (в нефтях), 58-90% (в углях). Кол-во O. y. в углях является одним из показателей степени их метаморфизма. E. C. Ларская.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Органический углерод" в других словарях:

    Органический углерод - Углерод, входящий в состав органических соединений Источник: ГОСТ 23740 79: Грунты. Методы лабораторного определения содержания органических веществ …

    органический углерод - — EN organic carbon Carbon which comes from an animal or plant. (Source: PHC) Тематики охрана окружающей среды EN organic… … Справочник технического переводчика

    растворенный органический углерод - 3.4 растворенный органический углерод; РОУ: Углерод, присутствующий в воде в виде органических соединений, проходящих при фильтровании через мембранный фильтр с порами диаметром 0,45 мкм. Источник: ГОСТ Р 52991 2008: Вода. Методы определения… … Словарь-справочник терминов нормативно-технической документации

    общий органический углерод - 3.3 общий органический углерод; ООУ: Углерод, присутствующий в воде в виде органических соединений в растворенном и нерастворенном состоянии. Источник: ГОСТ Р 52991 2008: Вода. Методы определения содержания общего и растворенного органического… … Словарь-справочник терминов нормативно-технической документации

    общий органический углерод, ООУ - 3.3 общий органический углерод, ООУ (total organic carbon, TOC): Углерод, присутствующий в воде в виде органических соединений в растворенном и нерастворенном состоянии. Источник: ГОСТ 31958 2012: Вода. Методы определения содержания общего и… … Словарь-справочник терминов нормативно-технической документации

    растворенный органический углерод (РОУ) - 3.11 растворенный органический углерод (РОУ): Углерод, присутствующий в воде в виде органических соединений, проходящих при фильтровании через мембранный фильтр с порами диаметром 0,45 мкм.

Вашему вниманию предлагаются две статьи, посвященные анализу вод с использованием двух аналитических методов:

  • Элементный анализ (определение общего органического углерода)

Анализ воды методом ионной хроматографии. Возможности метода и технические решения компании корпорации Dionex, США.

Ионная хроматография - позволяет определять неорганические и органические анионы, катионы щелочных и щелочноземельных металлов, катионы переходных металлов, амины и другие органические соединения в ионной форме. Хотя для анализа воды используется множество различных методов - ионная хроматография (ИХ) во всем мире является приоритетным методом и обеспечивает многокомпонентное определение в любых водах. Воды каждого типа имеют свои особенности и компоненты могут существенно различаться по уровню концентраций - от долей мкг/л до единиц г/л. Особенно важным является определение загрязняющих воду компонентов, присутствие которых в воде нежелательно или недопустимо. До появления ИХ не было эффективного метода определения ионов с такой чувствительностью, селективностью, воспроизводимостью и скоростью анализа. При этом анализ методом ИХ в большинстве случаев не требует пробоподготовки: при необходимости проба фильтруется и разбавляется. Анализ таких неорганических анионов, как фторид, хлорид, нитрит, нитрат, сульфат и фосфат методом ИХ многие годы является самым распространенным и рутинным анализом во всем мире. Разработаны и успешно применяются высокоэффективные колонки для определения хлорита, хлората, прехлората и др. Высокоэффективные колонки Dionex позволяют проводить одновременное определение катионов щелочных и щелочноземельных металлов и алифатических и ароматических аминов на одной колонке ИХ - прекрасно разработанный, высокоэффективный и быстрый метод анализа для очень широкого ряда наиболее часто определяемых аналитов в водах любого типа. Отсутствие сложной пробоподготовки, высокая чувствительность определения, быстрота анализа и большое разнообразие определяемых компонентов в воде делают эту метод идеальным для аналитических лабораторий, проводящих рутинный анализ воды любого состава - от высокочистой и питьевой до стоков и выбросов предприятий и коммунальных хозяйств.

Неорганические анионы

Анализ таких неорганических анионов, как фторид, хлорид, нитрит, нитрат, сульфат и фосфат методом ионной хроматографии многие годы является самым распространенным и рутинным анализом во всем мире.

Кроме ионохроматографических колонок для определения основных неорганических анионов разработаны и успешно применяются высокоэффективные колонки для определения наряду со стандартными анионами и оксианионов таких, как оксихалиды: хлорит, хлорат, прехлорат и др.

Органические кислоты

Наряду с неорганическими анионами в водах различного типа могут присутствовать и анионы органических кислот, например: ацетат, формиат, пропионат, оксалат, цитрат и др. Для таких задач используются высокоэффективные аналитические колонки большой емкости.

Неорганические катионы

Высокочувствительное и высокоэффективное ионохроматографическое определение катионов щелочных и щелочноземельных металлов также является рутинным методом анализа в мировой аналитической практике. На рисунке приведена хроматограмма быстрого изократического разделения катионов I и II групп.

Рис. Быстрое изократическое разделение катионов I и II групп на колонке IonPac СS12А 3х150 мм, Dionex, США.

Амины

Создание высокоэффективных сорбентов для катионного анализа позволяет проводить одновременное определение катионов щелочных и щелочноземельных металлов и алифатических и ароматических аминов на одной колонке.

Переходные металлы

Если перед аналитиком стоит задача определение только подвижной формы переходных металлов или металлов в определенной степени окисления - только ионная хроматография способна решить эту задачу. Компания Dionex поставляет колонки для одноколоночной катионной хроматографии для одновременного определения щелочных, щелочноземельных металлов, а также ряда переходных металлов. Альтернативный вариант определения переходных металлов - в виде окрашенных комплексов с ПАР. В отличие от предыдущих примеров, где детектирование аналитов происходит на кондуктометрическом детекторе, высокочувствительное детектирование определяемых компонентов происходит после пост-колоночной дериватизации на адсорбционном детекторе.

Заключение

Ионная хроматография - прекрасно разработанный, высокоэффективный и быстрый метод анализа для очень широкого ряда наиболее часто определяемых аналитов в водах любого типа. Отсутствие сложной пробоподготовки, высокая чувствительность определения, быстрота анализа и большое разнообразие определяемых компонентов в воде делают эту метод идеальным для аналитических лабораторий, проводящих рутинный анализ воды любого состава -от высокочистой до стоков и выбросов предприятий и коммунальных хозяйств.

Общий органический углерод - показатель содержания органических веществ в воде.

По мнению зарубежных специалистов, органический углерод является наиболее надежным показателем суммарного содержания органических веществ в воде. Этот показатель входит в группу интегральных показателей качества воды, таких как перманганатная и бихроматная окисляемость и БПК. При этом часто содержание органического углерода составляет примерно 1/3 величины ХПК, хотя это справедливо в основном для бытовых сточных вод и аналогичных им производственных стоков. Для природной воды поверхностных водоисточников Московского региона содержание органического углерода примерно равно значению перманганатной окисляемости (100-120%), а величина БПК 5 в 4-6 раз меньше содержания органического углерода.

По литературным данным в незагрязненных природных водах наименьшая концентрация растворенного органического углерода составляет примерно 1 мг/л, наибольшая - порядка 20 мг/л. В воде, богатой гумусовыми веществами, в частности, в болотной воде, содержание органического углерода достигает сотен мг/л.

Особенно важно контролировать содержание органического углерода в дистиллированной воде, используемой в электронике или в фармацевтическом производстве.

До настоящего времени содержание органического углерода нормируется только в воде, расфасованной в емкости СанПиН 2.1.4.1116-02. Для бутилированной воды 1 категории - 10 мг/л, для воды высшей категории - 5 мг/л. В процессе водоподготовки для дезинфекции питьевой воды обычно используют хлор или другие хлорирующие агенты (дезинфектанты), которые взаимодействуют с природными органическими веществами, присутствующими в воде, с образованием токсичных продуктов реакции. Количество побочных продуктов зависит в первую очередь от содержания в воде органических веществ. Вероятно, по этой причине в один из вариантов Проекта «Технического регламента о питьевой воде и питьевом водоснабжении» включен показатель «Общий органический углерод», норматив для которого составляет 5 мг/л.

Различают:

  • Общий органический углерод (ТОС) - массовая концентрация углерода, присутствующего в воде в виде органических соединений в растворенном и нерастворенном состоянии.
  • Растворенный органический углерод (DOC) - массовая концентрация углерода, присутствующего в воде в виде органических соединений, проходящих при фильтрации через мембранный фильтр с диаметром пор 0,45 мкм, включая цианаты и тиоцианаты.

Помимо простого измерения значения абсорбции при 254 нм, которое является показателем содержания органических веществ в воде, методы определения органического углерода предполагают предварительную деструкцию органических веществ, присутствующих в воде.

Процедура определения общего органического углерода обычно разделяется на три стадии:

  1. Подкисление пробы и продувка для удаления неорганического углерода
  2. Окисление оставшегося органического углерода до СО 2 . При этом окисление может проводиться двумя основными способами:
    - термическое окисление - сжигание в токе кислородсодержащего газа;
    - УФ окисление или каталитическое химическое окисление персульфатом калия.
  3. Детектирование образующегося СО 2 .

Следует обратить внимание, что на практике приведенные производителями ТОС анализаторов пределы определения получить весьма сложно. Реально при использовании дополнительно очищенного воздуха в качестве газа-окислителя предел определения составляет примерно 0,5 мг/л. При работе с кислородом пределы определения ниже.

В связи с этим особое внимание при определении органического углерода рекомендуется обращать на процедуры предупредительного контроля.

  • контроль чистоты посуды: посуду высушивают при 120 °С. Допускается мытье кислотой и высушивание при более низкой температуре;
  • подготовка фильтров при определении растворенного органического углерода: мембранные фильтры предварительно промывают 0,1 м соляной кислотой;
  • качество дистиллированной воды: дистиллированную воду готовят без использования резиновых пробок, шлангов, используют УФ-облучение, двойную дистилляцию со смесью перманганата и бихромата калия;
  • чистота газа-окислителя

При отборе проб следует руководствоваться следующими правилами:

  • Объем пробы - 50-100 мл. Пробы наливают доверху, используют стеклянную посуду.
  • Анализ выполняют в течение суток или консервируют пробы о-фосфорной кислотой (0,1 мл на 100 мл пробы), соляной или серной кислотой до рН<2;
  • Пробы хранят в холодильнике не более месяца.

Известно большое число международных стандартов по определению органического углерода в воде (ASTM D 4839, 4779, 2579,4129; ISO 8245; EPA 415.1, 415.2, 415.3; Standard Method 5310A, 5310B, 5310C, 5310D). В настоящее время подготовлен проект ГОСТа на метод определения общего и растворенного органического углерода, в котором достаточно подробно описаны все необходимые процедуры и который в ближайшее время будет утвержден ТК 343 «Качество воды».

Одним из самых удивительных элементов, который способен формировать огромное количество разнообразных соединений органической и неорганической природы, является углерод. Это настолько необычный по свойствам элемент, что еще Менделеев предрекал ему большое будущее, говоря о не раскрытых пока особенностях.

Позже это подтвердилось практически. Стало известно, что он - главный биогенный элемент нашей планеты, входящий в состав абсолютно всех живых существ. Помимо этого, способный существовать в таких формах, которые кардинально различаются по всем параметрам, но при этом состоят только лишь из атомов углерода.

В общем, особенностей у этой структуры много, именно с ними и постараемся разобраться в ходе статьи.

Углерод: формула и положение в системе элементов

В периодической системе элемент углерод располагается в IV (по новому образцу в 14) группе, главной подгруппе. Его порядковый номер 6, а атомный вес 12,011. Обозначение элемента знаком С говорит о его названии на латыни - carboneum. Есть несколько различных форм, в которых существует углерод. Формула его поэтому бывает различна и зависит от конкретной модификации.

Однако для написания уравнений реакций обозначение конкретное, конечно, есть. В целом, когда говорится о веществе в чистом виде, принята молекулярная формула углерода С, без индексации.

История открытия элемента

Сам по себе этот элемент известен с самой древности. Ведь один из главнейших минералов в природе - это каменный уголь. Поэтому для древних греков, римлян и других народностей секретом он не был.

Помимо этой разновидности, также использовали алмазы и графит. С последним долгое время было много запутанных ситуаций, так как часто без анализа состава за графит принимали такие соединения, как:

  • серебристый свинец;
  • карбид железа;
  • сульфид молибдена.

Все они были окрашены в черный цвет и поэтому считались графитом. Позже это недоразумение было разъяснено, и данная форма углерода стала сама собой.

С 1725 года большое коммерческое значение приобретают алмазы, а в 1970 освоена технология получения их искусственным путем. С 1779 года, благодаря работам Карла Шееле, изучаются химические свойства, которые проявляет углерод. Это послужило началом ряда важнейших открытий в области данного элемента и стало основой для выяснения всех его уникальнейших особенностей.

Изотопы углерода и распространение в природе

Несмотря на то что рассматриваемый элемент - один из важнейших биогенных, его общее содержание в массе земной коры составляет 0,15 %. Так происходит от того, что он подвергается постоянной циркуляции, естественному круговороту в природе.

В целом можно назвать несколько соединений минерального характера, в состав которых входит углерод. Это такие природные породы, как:

  • доломиты и известняки;
  • антрацит;
  • горючие сланцы;
  • природный газ;
  • каменный уголь;
  • нефть;
  • бурый уголь;
  • торф;
  • битумы.

Помимо этого, не следует забывать и о живых существах, которые являются просто хранилищем углеродных соединений. Ведь им образованы белки, жиры, углеводы, нуклеиновые кислоты, а значит самые жизненно важные структурные молекулы. В целом на пересчет сухой массы тела из 70 кг 15 приходится на чистый элемент. И так у каждого человека, не говоря уже о животных, растениях и прочих существах.

Если же рассмотреть и воды, то есть гидросферу в целом и атмосферу, то здесь присутствует смесь углерод-кислород, выражаемая формулой СО 2 . Диоксид или углекислый газ - один из основных газов, составляющих воздух. Именно в таком виде массовая доля углерода составляет 0,046%. Еще больше растворено углекислого газа в водах Мирового океана.

Атомная масса углерода как элемента составляет 12,011. Известно, что данная величина рассчитывается как среднее арифметическое между атомными весами всех существующих в природе изотопных разновидностей, с учетом их распространенности (в процентном соотношении). Так происходит и у рассматриваемого вещества. Есть три главных изотопа, в виде которых находится углерод. Это:

  • 12 С - его массовая доля в подавляющем большинстве составляет 98,93 %;
  • 13 С - 1,07 %;
  • 14 С - радиоактивный, период полураспада 5700 лет, устойчивый бетта-излучатель.

В практике определения геохронологического возраста образцов широко применяется радиоактивный изотоп 14 С, который является индикатором, благодаря своему длительному периоду распада.

Аллотропные модификации элемента

Углерод - это такой элемент, который в виде простого вещества существует в нескольких формах. То есть он способен формировать самое большое из известных на сегодня число аллотропных модификаций.

1. Кристаллические вариации - существуют в виде прочных структур с правильными решетками атомного типа. К данной группе относятся такие разновидности, как:

  • алмазы;
  • фуллерены;
  • графиты;
  • карбины;
  • лонсдейлиты;
  • и трубки.

Все они различаются решетки, в узлах которых - атом углерода. Отсюда и совершенно уникальные, не схожие свойства, как физические, так и химические.

2. Аморфные формы - их образует атом углерода, входящий в состав некоторых природных соединений. То есть это не чистые разновидности, а с примесями других элементов в незначительном количестве. В данную группу входят:

  • активированный уголь;
  • каменный и древесный;
  • сажа;
  • углеродная нанопена;
  • антрацит;
  • стеклоуглерод;
  • техническая разновидность вещества.

Их также объединяют особенности строения кристаллической решетки, объясняющие и проявляемые свойства.

3. Соединения углерода в виде кластеров. Такая структура, при которой атомы замыкаются в особую полую изнутри конформацию, заполняемую водой или ядрами других элементов. Примеры:

  • углеродные наноконусы;
  • астралены;
  • диуглерод.

Физические свойства аморфного углерода

Из-за большого разнообразия аллотропных модификаций, выделить какие-то общие физические свойства для углерода сложно. Проще говорить о конкретной форме. Так, например, аморфный углерод обладает следующими характеристиками.

  1. В основе всех форм - мелкокристаллические разновидности графита.
  2. Высокая теплоемкость.
  3. Хорошие проводниковые свойства.
  4. Плотность углерода около 2 г/см 3 .
  5. При нагревании свыше 1600 0 С происходит переход в графитовые формы.

Сажа, и каменные разновидности находят широкое применение в технических целях. Они не являются проявлением модификации углерода в чистом виде, однако содержат его в очень большом количестве.

Кристаллический углерод

Существует несколько вариантов, в которых углерод - вещество, формирующее правильные кристаллы различного вида, где атомы соединяются последовательно. В результате происходит образование следующих модификаций.

  1. - кубическая, в которой соединяются четыре тетраэдра. В результате все ковалентные химические связи каждого атома максимально насыщенны и прочны. Это объясняет физические свойства: плотность углерода 3300 кг/м 3 . Высокая твердость, низкая теплоемкость, отсутствие электрической проводимости - все это является результатом строения кристаллической решетки. Существуют технически полученные алмазы. Образуются при переходе графита в следующую модификацию под влиянием высокой температуры и определенного давления. В целом так же высока, как и прочность - около 3500 0 С.
  2. Графит. Атомы расположены подобно структуре предыдущего вещества, однако происходит насыщение только трех связей, а четвертая становится более длинной и менее прочной, она соединяет между собой "слои" гексагональных колец решетки. В результате получается, что графит - мягкое, жирное на ощупь вещество черного цвета. Обладает хорошей электрической проводимостью и имеет высокую температуру плавления - 3525 0 С. Способно к сублимации - возгонке из твердого состояния в газообразное, минуя жидкое (при температуре 3700 0 С). Плотность углерода - 2,26 г/см 3, что гораздо ниже таковой у алмаза. Это объясняет их различные свойства. Из-за слоистой структуры кристаллической решетки, возможно использование графита для изготовления грифелей простых карандашей. При проведении по бумаге чешуйки отслаиваются и оставляют на бумаге след черного цвета.
  3. Фуллерены. Открыты были лишь в 80-х годах прошлого столетия. Представляют собой модификации, в которых углероды соединяются между собой в особую выпуклую замкнутую структуру, имеющую в центре пустоту. Причем форма кристалла - многогранник, правильной организации. Количество атомов четное. Самая известная форма фуллерен С 60 . Образцы подобного вещества были найдены при исследованиях:
  • метеоритов;
  • донных отложений;
  • фольгуритов;
  • шунгитов;
  • космического пространства, где содержались в виде газов.

Все разновидности кристаллического углерода имеют важное практическое значение, поскольку обладают рядом полезных в технике свойств.

Химическая активность

Молекулярный углерод проявляет низкую химическую активность вследствие своей устойчивой конфигурации. Заставить его вступать в реакции можно лишь сообщив атому дополнительную энергию и заставив электроны внешнего уровня распариться. В этот момент валентность становится равна 4. Поэтому в соединениях он имеет степень окисления + 2, + 4, - 4.

Практически все реакции с простыми веществами, как металлами, так и неметаллами, протекают под влиянием высоких температур. Рассматриваемый элемент может быть как окислителем, так и восстановителем. Однако последние свойства выражены у него особенно сильно, именно на этом основано применение его в металлургической и других отраслях промышленности.

В целом способность вступать в химическое взаимодействие зависит от трех факторов:

  • дисперсности углерода;
  • аллотропной модификации;
  • температуры реакции.

Таким образом, в ряде случаев происходит взаимодействие со следующими веществами:

  • неметаллами (водородом, кислородом);
  • металлами (алюминием, железом, кальцием и прочими);
  • оксидами металлов и их солями.

С кислотами и щелочами не реагирует, с галогенами очень редко. Важнейшее из свойств углерода - способность образовывать длинные цепи между собой. Они могут замыкаться в цикл, формировать разветвления. Так происходит образование органических соединений, которые на сегодняшний день исчисляются миллионами. Основа этих соединений два элемента - углерод, водород. Также в состав могут входить и другие атомы: кислород, азот, сера, галогены, фосфор, металлы и прочие.

Основные соединения и их характеристика

Существует множество различных соединений, в состав которых входит углерод. Формула самого известного из них - СО 2 - углекислый газ. Однако помимо этого оксида, существует еще СО - монооксид или угарный газ, а также недооксид С 3 О 2 .

Среди солей, в состав которых входит данный элемент, самыми распространенными являются карбонаты кальция и магния. Так, карбонат кальция имеет несколько синонимов в названии, так как в природе встречается в виде:

  • мела;
  • мрамора;
  • известняка;
  • доломита.

Важное значение карбонатов щелочноземельных металлов проявляется в том, что они активные участники процессов образования сталактитов и сталагмитов, а также подземных вод.

Угольная кислота - еще одно соединение, которое образует углерод. Формула ее - Н 2 СО 3 . Однако в обычном виде она крайне неустойчива и сразу же в растворе распадается на углекислый газ и воду. Поэтому известны лишь ее соли, а не она сама, как раствор.

Галогениды углерода - получаются в основном косвенным путем, так как прямые синтезы идут лишь при очень высоких температурах и с низким выходом продукта. Одно из самых распространенных - CCL 4 - тетрахлорметан. Ядовитое соединение, способное при вдыхании вызвать отравление. Получают при реакциях радикального фотохимического замещения в метане.

Карбиды металлов - соединения углерода, в которых он проявляет степень окисления 4. Также возможно существование объединений с бором и кремнием. Главное свойство карбидов некоторых металлов (алюминия, вольфрама, титана, ниобия, тантала, гафния) - это высокая прочность и отличная электропроводность. Карбид бора В 4 С - одно из самых твердых веществ после алмаза (9,5 по Моосу). Данные соединения используются в технике, а также химической промышленности, как источники получения углеводородов (карбид кальция с водой приводит к образованию ацетилена и гидроксида кальция).

Многие сплавы металлов изготавливают с использованием углерода, значительно повышая тем самым их качественные и технические характеристики (сталь - сплав железа с углеродом).

Отдельного внимания заслуживают многочисленные органические соединения углерода, в которых он - основополагающий элемент, способный соединяться с такими же атомами в длинные цепи различного строения. К ним можно отнести:

  • алканы;
  • алкены;
  • арены;
  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • спирты;
  • карбоновые кислоты и многие другие классы веществ.

Применение углерода

Значение соединений углерода и его аллотропных модификаций в жизни человека очень велико. Можно назвать несколько самых глобальных отраслей, чтобы стало понятно, что это действительно так.

  1. Данный элемент образует все виды органического топлива, из которого человек получает энергию.
  2. Металлургическая промышленность использует углерод как сильнейший восстановитель для получения металлов из их соединений. Здесь же находят широкое применение карбонаты.
  3. Строительство и химическая промышленность потребляют огромное количество соединений углерода для синтеза новых веществ и получения необходимых продуктов.

Также можно назвать такие отрасли хозяйства, как:

  • ядерная промышленность;
  • ювелирное дело;
  • техническое оборудование (смазки, жаропрочные тигли, карандаши и прочее);
  • определение геологического возраста пород - радиоактивный индикатор 14 С;
  • углерод - прекрасный адсорбент, что позволяет использовать его для изготовления фильтров.

Круговорот в природе

Масса углерода, находящегося в природе, включена в постоянный круговорот, который циклически совершается ежесекундно по всему земному шару. Так, атмосферный источник углерода - СО 2 , поглощается растениями и выделяется всеми живыми существами в процессе дыхания. Попадая в атмосферу, он снова поглощается, и так цикл не прекращается. При этом отмирание органических остатков приводит к высвобождению углерода и накоплению его в земле, откуда затем он снова поглощается живыми организмами и выводится в атмосферу в виде газа.

Рекомендуем почитать

Наверх